Office of Aeronautics and Space Technology

PATHFINDER

SURFACE EXPLORATION, IN-SPACE OPERATIONS, AND SPACE TRANSFER

Technology for NASA Future Missions an AIAA/NASA OAST Conference

> September 12-13, 1988 The Capital Hilton Washington, DC

> > JOHN MANKINS
> > PATHFINDER PROGRAM MANAGER

PATHFINDER PROGRAM AREA SURFACE EXPLORATION

TECHNOLOGY NEEDS

- PILOTED AND AUTOMATED SURFACE MOBILITY AND MANIPULATION SYSTEMS
- MOBILE AND STATIONARY SURFACE POWER SYSTEMS (SOURCES AND STORAGE)
- ADVANCED SPACE COMPUTING, WITH GROUND & ON-BOARD AUTONOMOUS SYSTEMS
- MULTIPLE SENSORS (REMOTE AND LOCAL)
- SURFACE MATERIALS, STRUCTURES, AND MECHANISMS
- TECHNOLOGIES FOR SURFACE SCIENCES (E.G., SAMPLING AND IN SITU ANALYSIS)

ELEMENT PROGRAMS

- PLANETARY ROVER
- SAMPLE ACQUISITION, ANALYSIS,
 & PRESERVATION
- AUTONOMOUS LANDER
- SURFACE POWER
- PHOTONICS

TECHNOLOGIES

- MOBILITY
- AUTONOMOUS GUIDANCE
- SAMPLING ROBOTICS
- ROVER POWER

MISSION APPLICATIONS

- LUNAR ROVERS (Piloted & Robotic)
- MARS ROVERS (Piloted & Robotic)
- OTHER ROBOTIC EXPLORATION AND SAMPLE RETURN MISSIONS (e.g., CNSR)

- LEAD OAST DIVISION: Information Sciences And Human Factors Division
- LEAD NASA FIELD CENTER: Jet Propulsion Laboratory
- PARTICIPATING CENTERS: Ames Research Center Langley Research Center Lewis Research Center
- FY 1989 BUDGET: \$ 5 MILLION

TECHNOLOGIES

- SAMPLING TOOLS & SYSTEMS
- CHEMICAL/PHYSICAL ANALYSIS SENSORS
- PRESERVATION (e.g., Materials, Seals)

- **LUNAR ROVERS (Piloted & Robotic)**
- MARS ROVERS (Piloted & Robotic)
- OTHER SAMPLE RETURN MISSIONS (CNSR)

- LEAD OAST DIVISION:
 Materials and Structures Division
- LEAD NASA FIELD CENTER: Jet Propulsion Laboratory
- PARTICIPATING CENTERS: Ames Research Center Johnson Space Center
- FY 1989 BUDGET: \$ 1 MILLION

PATHFINDER AUTONOMOUS LANDER

-0AST

TECHNOLOGIES

- GN&C (Terminal Descent)
- SENSORS
- SYSTEMS AUTONOMY
- MECHANIZATION/MECHANICAL SYSTEMS

MISSION APPLICATIONS

- LUNAR OUTPOST OPERATIONS VEHICLES
- ROBOTIC SOLAR SYSTEM EXPLORATION
- PILOTED MARS EXPEDITION

ó

- LEAD OAST DIVISION: Information Sciences & Human Factors Division
- LEAD NASA FIELD CENTER: Johnson Space Center
- PARTICIPATING CENTERS: Ames Research Center Jet Propulsion Laboratory
- FY 1989 BUDGET: \$ 1 MILLION

PATHFINDER SURFACE POWER

TECHNOLOGIES

- ADVANCED PHOTOVOLTAICS
- POWER STORAGE (e.g, Fuel Cells)
- ENVIRONMENTAL COUNTERMEASURES

<u>5</u>

- LUNAR OUTPOST START-UP
- PILOTED MARS EXPEDITIONS
- OTHER SPACECRAFT (Earth-orbit, Transfer)

- LEAD OAST DIVISION: Propulsion, Power, and Energy Division
- LEAD NASA FIELD CENTER: Lewis Research Center
- PARTICIPATING CENTERS: Jet Propulsion Laboratory (Not funded in FY'89)
- FY 1989 BUDGET: \$1.5 MILLION

TECHNOLOGIES

- FAULT-TOLERANT ELECTRONICS/ PHOTONICS SYSTEM ARCHITECTURES
- PHOTONICS COMPONENTS
 (Sensors, Memories, Input/Output Components, Image Processing)

83

- LUNAR OUTPOST SYSTEMS (e.g., Observatories)
- PILOTED PHOBOS/MARS EXPEDITIONS
- ROBOTIC SOLAR SYSTEM EXPLORATION (e.g., Autonomous Landers, Planetary Rovers)
- ADVANCED EARTH-ORBITING OPERATIONS

- LEAD OAST DIVISION: Information Sciences & Human Factors Division
- PARTICIPATING CENTERS: Ames Research Center Jet Propulsion Laboratory Johnson Space Center Langley Research Center
- INITIATION DEFERRED TO 1990

TECHNOLOGY NEEDS

- AUTOMATED AND SEMI-AUTONOMOUS OPERATIONS (E.G., RENDEZVOUS & DOCKING)
- ASSEMBLY, CONSTRUCTION, AND TESTING OF LARGE SPACE SYSTEMS (IN ORBIT AND ON SURFACES)
- MANAGEMENT AND LONG-TERM STORAGE OF CRYOGENIC FLUIDS
- HIGH-CAPACITY POWER SYSTEMS (E.G., NUCLEAR)
- HIGH-RATE SPACE COMMUNICATIONS SYSTEMS
- IN SITU RESOURCE UTILIZATION TECHNIQUES AND HARDWARE (E.G., FUEL PRODUCTION AND MINING)

PATHFINDER PROGRAM AREA IN-SPACE OPERATIONS

ELEMENT PROGRAMS

- AUTONOMOUS RENDEZVOUS & DOCKING
- IN-SPACE ASSEMBLY AND CONSTRUCTION
- CRYOGENIC FLUID DEPOT
- SPACE NUCLEAR POWER (SP-100)
- RESOURCE PROCESSING PILOT PLANT
- OPTICAL COMMUNICATIONS

OAST

TECHNOLOGIES

- SENSORS (e.g., Laser Ranging, Radars)
- GN&C (Fault-Tolerant, On-Board)
- SYSTEM AUTONOMY

- SPACE TRANSFER VEHICLES (Earth & Lunar)
- PILOTED MARS EXPEDITION
- ROBOTIC SAMPLE RETURN MISSIONS (MRSR)

- LEAD OAST DIVISION: Information Sciences & Human Factors Division
- LEAD NASA FIELD CENTER: Johnson Space Center
- PARTICIPATING CENTERS: Jet Propulsion Laboratory Marshall Space Flight Center
- FY 1989 BUDGET: \$1 MILLION

TECHNOLOGIES

- LARGE-SCALE MANIPULATION SYSTEMS (Including highly flexible manipulators)
- JOINING TECHNIQUES (e.g., Welding)
- PRECISION STRUCTURE ALIGNMENT/ADJUSTMENT

- LUNAR OUTPOST STAGING
- MARS MISSION STAGING (Robotic, Piloted)
- ADVANCED SPACE STATION OPERATIONS
- EARTH-ORBIT OBSERVATORY STAGING

- LEAD OAST DIVISION: Materials and Structures Division
- LEAD NASA FIELD CENTER: Langley Research Center
- PARTICIPATING CENTERS: Jet Propulsion Laboratory Johnson Space Center Marshall Space Flight Center
- FY 1989 BUDGET: \$1 MILLION

PATHFINDER CRYOGENIC FLUID DEPOT

TECHNOLOGIES

- LONG-TERM CRYOGEN CONTAINMENT & MANAGEMENT
- REFRIGERATION COMPONENTS/SYSTEMS
- FLUID TRANSFER COMPONENTS/SYSTEMS

- LUNAR OUTPOST STAGING/OPERATIONS
- MARS MISSION STAGING (Robotic, Piloted)
- ADVANCED SPACE STATION OPERATIONS
- ASTROPHYSCIS OBSERVATORY SERVICING

- LEAD OAST DIVISION: Propulsion, Power, and Energy Division
- LEAD NASA FIELD CENTER: Lewis Research Center
- PARTICIPATING CENTERS: Johnson Space Center Marshall Space Flight Center
- FY 1989 BUDGET: \$3 MILLION

PATHFINDER SPACE NUCLEAR POWER (SP-100)

TECHNOLOGIES

- REFRACTORY METAL REACTOR
- FUEL PINS
- HIGH-TEMPERATURE CONTROL SYSTEM
- LIQUID-METAL THERMOELECTRIC MAGNETIC PUMP
- THERMAL-TO-ELECTRIC CONVERSION
- HEAT-PIPE HEAT-REJECTION SYSTEMS

MISSION APPLICATIONS

- LUNAR/MARS OUTPOSTS
- PILOTED MARS EXPEDITION
- ADVANCED EARTH-ORBIT OPERATIONS
- ROBOTIC SOLAR SYSTEM EXPLORATION (Nuclear Electric Propulsion/Power)

PATHFINDER RESOURCE PROCESSING PILOT PLANT

TECHNOLOGIES

- MATERIALS ANALYSIS SENSORS
- MECHANICAL SEPARATION/EXTRACTION
- ELECTRO-CHEMICAL SEPARATION/EXTRACTION
- ROBOTIC MATERIALS COLLECTION/HANDLING

- LUNAR OUTPOST RESOURCE PLANT
- MARS RESOURCE PLANT
- OTHER SOLAR SYSTEM RESOURCE UTILIZATION

- LEAD OAST DIVISION:
 Materials and Structures Division
- LEAD NASA FIELD CENTER: Johnson Space Center
- PARTICIPATING CENTERS:
 Jet Propulsion Laboratory
- INITIATION DEFERRED TO 1990

PATHFINDER OPTICAL COMMUNICATIONS

OAST

TECHNOLOGIES

- ACQUISITION & TRACKING SYSTEMS
- CONTROL SYSTEMS
- TELESCOPE/LASER SYSTEMS

MISSION APPLICATIONS

- LUNAR OUTPOST
- PILOTED MARS EXPEDITIONS
- ROBOTIC SOLAR SYSTEM EXPLORATION

 LEAD OAST DIVISION: Information Sciences & Human Factors Division

 PARTICIPATING CENTERS: Goddard Space Flight Center Jet Propulsion Laboratory

INITIATION DEFERRED TO 1990

TECHNOLOGY NEEDS

- ADVANCED CHEMICAL PROPULSION SYSTEMS (DESIGNED FOR SPACE-BASING/MAINTENANCE)
- HIGH-THRUST IN-SPACE PROPULSION FOR HUMAN MISSION STAGING
- LUNAR-LEO AND INTERPLANETARY AERO-BRAKING (TPS, GN&C, AEROTHERMODYNAMICS)
- DESCENT/ASCENT PROPULSION FOR MOON/ MARS APPLICATIONS
- HIGH-EFFICIENCY ELECTRIC PROPULSION FOR CARGO TRANSFER

PATHFINDER PROGRAM AREA SPACE TRANSFER

OAST

ELEMENT PROGRAMS

- CHEMICAL TRANSFER PROPULSION
- HIGH-ENERGY AEROBRAKING
- CARGO VEHICLE PROPULSION

PATHFINDER CHEMICAL TRANSFER PROPULSION

0AST

TECHNOLOGIES

- LIQUID OXYGEN/HYDROGEN ENGINES
- HIGH-HEAT COMBUSTERS
- HIGH-PRESSURE TURBO-MACHINERY
- INTEGRATED DIAGNOSTICS/CONTROLS

- LUNAR OUTPOST OPERATIONS VEHICLES
- ROBOTIC SOLAR SYSTEM EXPLORATION
- PILOTED MARS EXPEDITION
- ADVANCED EARTH-ORBIT OPERATIONS

- LEAD OAST DIVISION: Propulsion, Power, and Energy Division
- LEAD NASA FIELD CENTER: Lewis Research Center
- PARTICIPATING CENTERS: Marshall Space Flight Center (Not funded in FY'89)
- FY 1989 BUDGET: \$4 MILLION

PATHFINDER HIGH-ENERGY AEROBRAKING

OASI

TECHNOLOGIES

- AEROBRAKE CONFIGURATIONS
- AEROTHERMODYNAMICS
- GN&C (On-Board, Autonomous, Adaptive)
- THERMAL PROTECTION SYSTEMS

- LUNAR OUTPOST OPERATIONS
- ROBOTIC/PILOTED MARS EXPEDITION
- ROBOTIC SOLAR SYSTEM EXPLORATION

- LEAD OAST DIVISION: Aerodynamics Division
- LEAD NASA FIELD CENTER: Langley Research Center
- PARTICIPATING CENTERS: Ames Research Center Johnson Space Center Jet Propulsion Laboratory
- FY 1989 BUDGET: \$1.5 MILLION

PATHFINDER CARGO VEHICLE PROPULSION

OAST

TECHNOLOGIES

- MAGNETOPLASMADYNAMIC THRUSTERS (MPD) (e.g., Cathodes, Controls, Magnetic Fields, High Power Level Systems)
- ION ENGINES (Testing)
- LONG-LIFE TESTING

- LUNAR OUTPOST OPERATIONS (OTV/Ion)
- PILOTED MARS EXPEDITION (Cargo Vehicle)
- ROBOTIC SOLAR SYSTEM EXPLORATION (Ion)

- LEAD OAST DIVISION: Propulsion, Power, and Energy Division
- LEAD NASA FIELD CENTER: Lewis Research Center
- PARTICIPATING CENTERS: Jet Propulsion Laboratory
- INITIATION DEFERRED TO 1990

PATHFINDER THRUSTS AND ELEMENTS

-OASI

91

MISSION STUDIES

EXPLORATION

PLANETARY ROVER
SAMPLE ACQUISTION, ANALYSIS
& PRESERVATION
SURFACE POWER
OPTICAL COMMUNICATIONS

HUMANS-IN-SPACE

EVA/SUIT HUMANPERFORMANCE CLOSED-LOOP LIFE SUPPORT

TRANSFER VEHICLES

CHEMICAL TRANSFER PROPULSION CARGO VEHICLE PROPULSION HIGH ENERGY AEROBRAKING AUTONOMOUS LANDER FAULT-TOLERANT SYSTEMS

OPERATIONS

AUTONOMOUS RENDEZVOUS AND DOCKING RESOURCE PROCESSING PILOT PLANT IN-SPACE ASSEMBLY & CONSTRUCTION CRYOGENIC FLUID DEPOT SPACE NUCLEAR POWER (SP100)

1		